Муниципальное автономное общеобразовательное учреждение города Ростова —на- Дону «Гимназия № 76 имени Героя Советского Союза Никандровой А.А.»

Приложение№1

к Основной образовательной программе СОО

Приказ об утверждении №405

от 29 августа 2022 года

РАБОЧАЯ ПРОГРАММА

по физике

Для 10 «А» и 11 «А» классов

на 2022-2023 учебный год

среднее общее образование

Пояснительная записка

Программа по физике для 10 - 11 классов составлена в соответствии с:

- Федеральным законом об образовании в Российской Федерации (от 29.12.2012 N 273-ФЗ (ред. от 29.07.2017));
- требованиями Федерального государственного образовательного стандарта среднего общего образования (ФГОС СОО);
- Приказом Министерства образования и науки Российской Федерации от 17.05.2012 № 413 «Об утверждении федерального государственного образовательного стандарта среднего общего образования» (с последующими изменениями);
- Приказом Министерства просвещения Российской Федерации от 28.12.2018 № 345 «О Федеральном перечне учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования»;
- Санитарно-эпидемиологических правил и норм СанПиН 2.4.3648 20 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях», утвержденные Постановлением Главного государственного санитарного врача РФ
- Учебного плана
- авторской рабочей программы: М.А. Петрова, И.Г. Куликова "Рабочая программа к линии УМК Г.Я. Мякишева, М.А. Петровой. Физика. Базовый уровень 10-11 класс" М.: Дрофа, 2019

Рабочая программа ориентирована на использование УМК Г.Я. Мякишева линии «Дрофа»:

- 1. Программа ориентирована на УМК Физика. Базовый уровень. 10-11 классы. Рабочая программа к линии УМК Г.Я Мякишева, М.А. Петровой/М.А. Петрова, И.Г. Куликова. М.: Дрофа, 2019.
- 2. Физика. Базовый уровень. 10 класс: учебник / Г.Я. Мякишев, М.А. Петрова. М.: Дрофа, 2019.
- 3. Физика. Базовый уровень. 11 класс: учебник / Г.Я. Мякишев, М.А. Петрова. М.: Дрофа, 2019.
- В рабочей программе соблюдается преемственность с Федеральным государственным образовательным стандартом основного общего образования; учитываются межпредметные связи, а также возрастные и психологические особенности школьников.

Базисный учебный (образовательный) план на изучение физики в 10 - 11 классах базового уровня обучения средней школы отводит 2 учебных часа в неделю в течение каждого года обучения, всего 134 часа.

Изучение физики в 10 - 11 классах направлено на достижение следующих пелей:

- освоение знаний о фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира; наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; методах научного познания природы;
- применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ; практического использования физических знаний;
- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний и умений по физике с использованием различных источников информации, в том числе средств современных информационных технологий; формирование умений оценивать достоверность естественнонаучной информации;
- воспитание убежденности в возможности познания законов природы; использования достижений физики на благо развития человеческой цивилизации; необходимости сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественнонаучного содержания; готовности к морально-этической оценке использования научных достижений, чувства ответственности за защиту окружающей среды;
- использование приобретенных знаний и умений для решения практических задач повседневной жизни, обеспечения безопасности собственной жизни.

Достижение этих целей обеспечивается решением следующих задач:

- формирования основ научного мировоззрения;
- развития интеллектуальных способностей учащихся;
- развитие познавательных интересов школьников в процессе изучения физики;
- знакомство с методами научного познания окружающего мира;
- постановка проблем, требующих от учащихся самостоятельной деятельности по их разрешению;
- вооружение школьника научным методом познания, позволяющим получать объективные знания об окружающем мире.

Планируемые результаты освоения учебного предмета.

1.1. Личностные результаты.

Личностные результаты в сфере отношений обучающихся к себе, к своему здоровью, к познанию себя:

- ориентация обучающихся на достижение личного счастья, реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы;
- готовность и способность обеспечить себе и своим близким достойную жизнь в процессе самостоятельной, творческой и ответственной деятельности;
- готовность и способность обучающихся к отстаиванию личного достоинства, собственного мнения, готовность и способность вырабатывать собственную позицию по отношению к общественно-политическим событиям прошлого и настоящего на основе осознания и осмысления истории, духовных ценностей и достижений нашей страны;
- готовность и способность обучающихся к саморазвитию и самовоспитанию в соответствии с общечеловеческими ценностями и идеалами гражданского общества, потребность в физическом самосовершенствовании, занятиях спортивнооздоровительной деятельностью;
- принятие и реализация ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью;
- неприятие вредных привычек: курения, употребления алкоголя, наркотиков. Личностные результаты в сфере отношений обучающихся к России как к Родине (Отечеству):
- российская идентичность, способность к осознанию российской идентичности в поликультурном социуме, чувство причастности к историко-культурной общности российского народа и судьбе России, патриотизм, готовность к служению Отечеству, его защите;
- уважение к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение к государственным символам (герб, флаг, гимн);
- формирование уважения к русскому языку как государственному языку
 Российской Федерации, являющемуся основой российской идентичности и главным фактором национального самоопределения;
- воспитание уважения к культуре, языкам, традициям и обычаям народов, проживающих в Российской Федерации.

Личностные результаты в сфере отношений обучающихся к закону, государству и к гражданскому обществу:

- гражданственность, гражданская позиция активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок.
- Готовность отстаивать собственные права и свободы человека и гражданина согласно общепризнанным принципам и нормам международного права и в соответствии с Конституцией Российской Федерации, правовая и политическая грамотность;
- мировоззрение, соответствующее современному уровню развития науки и общественной практики, основанное на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;
- готовность обучающихся к конструктивному участию в принятии решений, затрагивающих их права и интересы, в том числе в различных формах общественной самоорганизации, самоуправления, общественно значимой деятельности;
- интернационализма, приверженность идеям дружбы, равенства, взаимопомощи народов; воспитание уважительного отношения национальному достоинству людей, их чувствам, религиозным убеждениям; – готовность обучающихся противостоять идеологии экстремизма, национализма, ксенофобии; коррупции; дискриминации по социальным, религиозным, расовым, национальным признакам и другим негативным социальным явлениям.

Личностные результаты в сфере отношений обучающихся с окружающими людьми:

- нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения; – принятие гуманистических ценностей, осознанное, уважительное доброжелательное отношение К другому человеку, его мнению, мировоззрению;
- способность к сопереживанию и формирование позитивного отношения к людям, в том числе к лицам с ограниченными возможностями здоровья и инвалидам; бережное, ответственное и компетентное отношение к физическому и психологическому здоровью других людей, умение оказывать первую помощь;

- формирование выраженной в поведении нравственной позиции, в том числе способности к сознательному выбору добра, нравственного сознания и поведения на основе усвоения общечеловеческих ценностей и нравственных чувств (чести, долга, справедливости, милосердия и дружелюбия);
- развитие компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности.

Личностные результаты в сфере отношений обучающихся к окружающему миру, живой природе, художественной культуре:

- мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- экологическая культура, бережное отношения к родной земле, природным богатствам России и мира; понимание влияния социально-экономических процессов на состояние природной и социальной среды, ответственность за состояние природных ресурсов; умения и навыки разумного природопользования, нетерпимое отношение к действиям, приносящим вред экологии; приобретение опыта эколого-направленной деятельности;
- эстетическое отношения к миру, готовность к эстетическому обустройству собственного быта.

Личностные результаты в сфере отношений обучающихся к семье и родителям, в том числе подготовка к семейной жизни:

- ответственное отношение к созданию семьи на основе осознанного принятия ценностей семейной жизни;
- положительный образ семьи, родительства (отцовства и материнства), семейных ценностей.

Личностные результаты в сфере отношения обучающихся к труду, в сфере социально-экономических отношений:

- уважение ко всем формам собственности, готовность к защите своей собственности,
- осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов;

- готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем
- потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение к разным видам трудовой деятельности;
- готовность к самообслуживанию, включая обучение и выполнение домашних обязанностей.

Личностные результаты в сфере физического, психологического, социального и академического благополучия обучающихся:

– физическое, эмоционально-психологическое, социальное благополучие обучающихся в жизни образовательной организации, ощущение детьми безопасности и психологического комфорта, информационной безопасности.

Метапредметные результаты

Метапредметные результаты освоения основной образовательной программы представлены тремя группами универсальных учебных действий (УУД).

1. Регулятивные универсальные учебные действия

Выпускник научится:

- самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
- оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;
- ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
- выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели; сопоставлять полученный результат деятельности с поставленной заранее целью.

2. Познавательные универсальные учебные действия

Выпускник научится:

– искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;

- критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
- находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
- менять и удерживать разные позиции в познавательной деятельности.

3. Коммуникативные универсальные учебные действия

Выпускник научится:

- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;
- при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);
- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений.

Предметные результаты

Выпускник на базовом уровне научится:

• демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современных техники и технологий, в практической деятельности людей;

- показывать на примерах взаимосвязь между физикой и другими естественными науками;
- устанавливать взаимосвязь естественно-научных явлений и применять основные физические модели для их описания и объяснения;
- использовать информацию физического содержания при решении учебных, практических, проектных и исследовательских задач, интегрируя информацию из различных источников и критически ее оценивая;
- различать и уметь использовать в учебно-исследовательской деятельности методы научного исследования (наблюдение, описание, измерение, эксперимент, выдвижение гипотезы, моделирование и т. д.) и формы научного познания (факты, законы, теории), демонстрируя на примерах их роль и место в научном познании;
- проводить прямые и косвенные измерения физических величин, выбирая измерительные приборы с учетом необходимой точности измерений, планировать ход измерений, получать значение измеряемой величины и оценивать относительную погрешность измерения по формулам;
- выполнять исследования зависимостей между физическими величинами: проводить измерения и определять на основе исследования значение параметров, характеризующих данную зависимость между величинами, и делать вывод с учетом погрешности измерений;
- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учетом границ их применимости
- решать качественные задачи (в том числе и межпредметного характера), используя модели, физические величины и законы; выстраивать логически верную цепочку объяснения (доказательства) предложенного в задаче процесса (явления);
- решать расчетные задачи с явно заданной физической моделью. На основе анализа условия задачи выделять физическую модель, находить физические величины и законы, необходимые и достаточные для ее решения, проводить расчеты и проверять полученный результат;
- учитывать границы применения изученных физических моделей при решении физических и межпредметных задач;
- применять знания о принципах работы и основных характеристиках изученных машин, приборов и других технических устройств для решения практических, учебно-исследовательских и проектных задач;

• использовать знания о физических объектах и процессах в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для принятия решений в повседневной жизни.

Выпускник на базовом уровне получит возможность научиться:

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- самостоятельно планировать и проводить физические эксперименты;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические и роль физики в решении этих проблем;
- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему, как на основе имеющихся знаний, так и при помощи методов оценки.

Содержание учебного предмета

10 класс (70 часов).

Введение «Физика и методы научного познания» (1ч.)

Физика и объекты ее изучения. Методы научного исследования в физике. Измерение физических величин.

Раздел 1. «Механика» (34 ч.).

Тема 1. «Кинематика» (11 ч).

Различные способы описания механического движения. Прямолинейное движение. Перемещение. Радиус-вектор. Равномерное прямолинейное движение. Скорость, координата и пройденный путь при равномерном прямолинейном движении. Кинематическое уравнение равномерного движения.

Движение тела на плоскости. Средняя скорость при неравномерном прямолинейном движении. Мгновенная скорость. Движение тела с постоянным ускорением. Кинематическое уравнение равноускоренного прямолинейного движения.

Свободное падение тел. Относительность механического движения. Закон сложения скоростей. Кинематика движения по окружности.

Лабораторная работа № 1 «Исследование равноускоренного прямолинейного движения»

Лабораторная работа № 2 «Изучение движения тела брошенного горизонтально»

Тема 2. «Динамика» (11 ч.).

Модель материальной точки. Закон (принцип) инерции. Первый закон Ньютона. Инерциальные системы отсчета. Сила. Принцип суперпозиции сил. Инертность. Масса. Второй закон Ньютона. Третий закон Ньютона. Принцип относительности Галилея. Основная (прямая) и обратная задачи механики. Сила всемирного тяготения. Закон всемирного тяготения. Сила тяжести. Движение искусственных спутников Земли. Первая и вторая космические скорости. Перегрузки. Невесомость. Сила упругости. Закон Гука. Вес тела. Сила трения

. Лабораторная работа № 3 «Изучение движения тела по окружности под действием сил упругости и тяжести»

Лабораторная работа № 4 «Исследование изменения веса тела при его движении с ускорением»

Лабораторная работа № 5 «Изучение коэффициента трения скольжения»

Тема 3. «Законы сохранения» (8 ч.).

Импульс материальной точки. Другая формулировка второго закона Ньютона. Импульс системы тел. Закон сохранения импульса. Реактивное движение. Центр масс. Работа силы. Графический смысл работы. Мощность. КПД механизма. Механическая энергия. Кинетическая энергия. Теорема об изменении кинетической энергии. Потенциальная энергия. Закон сохранения механической энергии. Изменение механической энергии под действием внешних сил

Тема 4. «Статика. Законы гидро - и аэростатики» (4 ч.).

Равновесие материальной точки. Условия равновесия твердых тел. Центр тяжести твердого тела. Виды равновесия твердых тел. Давление в жидкостях и газах. Закон Паскаля. Закон Архимеда. Условие плавания тел.

Раздел 2. «Молекулярная физика и термодинамика» (21 ч.)

Тема 5. «Основы молекулярно-кинетической теории» (10 ч.)

Основные положения молекулярно-кинетической теории и их опытные обоснования. Общие характеристики молекул. Температура. Измерение температуры. Тепловое (термодинамическое) равновесие. Макроскопические параметры термодинамической системы.

Свойства газов. Модель идеального газа. Газовые законы. Абсолютная шкала температур. Уравнение состояния идеального газа. Основное уравнение МКТ. Температура и средняя кинетическая энергия хаотического движения молекул. Внутренняя энергия идеального газа. Измерение скоростей молекул газа. Строение и свойства твердых тел. Аморфные тела.

Тема 6. «Основы термодинамики» (6 ч.).

Работа газа в термодинамике. Количество теплоты. Уравнение теплового баланса. Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам. Адиабатический процесс. Необратимость тепловых машин. Второй закон термодинамики. Тепловые машины. Принцип действия теплового двигателя. Цикл Карно. Идеальная холодильная машина. Экологические проблемы использования тепловых машин.

Тема 7. «Изменения агрегатных состояний вещества» (5 ч.).

Испарение и конденсация. Насыщенный пар. Кипение жидкости. Влажность воздуха. Измерение влажности воздуха. Плавление и кристаллизация вещества

Раздел 3. «Электродинамика» (11 ч.)

Тема 8. «Электростатика» (11 ч.)

Электрический заряд. Электризация тел. Электроскоп. Электрометр. Закон сохранения электрического заряда. Модель точечного заряда. Закон Кулона. близкодействия Электрическое поле. Теории И дальнодействия. Напряженность электрического поля. Принцип суперпозиции электрических Графическое полей. Напряженность точечного заряда. изображение электрических полей.

Работа кулоновских сил. Потенциал электростатического поля и разность потенциалов.

Эквипотенциальные поверхности. Проводники в электростатическом поле. Диэлектрики в электростатическом поле. Диэлектрическая проницаемость. Электрическая емкость. Конденсаторы. Энергия электрического поля.

Повторение (3ч)

11 класс (68 часов).

Раздел 1. « Электродинамика» (продолжение) (24 ч.)

Тема 1. «Постоянный электрический ток» (9 ч).

Действия электрического тока. Условия существования электрического тока. Сторонние силы. Электрический ток в проводниках.

Закон Ома для участка цепи. Сопротивление проводника. Зависимость сопротивления от температуры. [Сверхпроводимость.]

Соединение проводников. Работа и мощность электрического тока. Закон Джоуля-Ленца. Измерение силы тока, напряжения и сопротивления в электрической цепи. Электродвижущая сила. Источники тока. Закон Ома для полной цепи

Лабораторная работа № 1 «Измерение ЭДС и внутреннего сопротивления источника тока»

Тема 2. «Электрический ток в средах» (5 ч.).

Экспериментальные обоснования электронной проводимости металлов. Электрический ток в растворах и расплавах электролитов. [Закон электролиза

Фарадея.] Электрический ток в газах. [Различные типы самостоятельного разряда. Плазма.] Электрический ток в вакууме. Электрический ток в полупроводниках. Полупроводниковые приборы.

Тема 3. «Магнитное поле» (6 ч.).

Магнитные взаимодействия. Магнитное поле токов. Индукция магнитного поля. Линии магнитной индукции. Действие магнитного поля на проводник с током. Закон Ампера. Движение заряженных частиц в магнитном поле. Сила Лоренца. Магнитные свойства вещества.

Тема 4. «Электромагнитная индукция» (4 ч.).

Опыты Фарадея. Магнитный поток. Правило Ленца. Закон электромагнитной индукции. Вихревое электрическое поле. [ЭДС индукции в движущемся проводнике.] Самоиндукция. Индуктивность. Энергия магнитного поля тока.

Раздел 2. «Колебания и волны» (26 ч.)

Тема 5. ««Механические колебания и волны»» (7 ч.)

Условия возникновения механических колебаний. Две модели колебательных систем. Кинематика колебательного движения. Гармонические колебания. Динамика колебательного движения. Превращение энергии при гармонических колебаниях. Затухающие колебания. Вынужденные колебания. Резонанс. Механические волны. Волны в среде. Звук.

Лабораторная работа №2 «Исследование колебаний пружинного маятника» Лабораторная работа №3 « Исследование колебаний нитяного маятника»

Тема 6. «Электромагнитные колебания и волны» (8 ч.).

Свободные электромагнитные колебания. Колебательный контур. Формула Томсона.

Процессы при гармонических колебаниях в колебательном контуре. Вынужденные электромагнитные колебания. Переменный ток. Действующие значения силы тока и напряжения.

Резистор в цепи переменного тока. [Конденсатор и катушка индуктивности в цепи переменного тока. Закон Ома для цепи переменного тока. Резонанс в электрических цепях. Мощность в цепи переменного тока. Трансформатор. [Производство, передача и использование электрической энергии.] Электромагнитные волны. Принципы радиосвязи и телевидения.

Тема 7. «Законы геометрической оптики» (5 ч.).

Закон прямолинейного распространения света. Закон отражения света. Закон преломления света. [Явление полного внутреннего отражения.] Линзы. Формула тонкой линзы.

Построение изображений в тонких линзах. Глаз как оптическая система. [Оптические приборы]

Тема 8. «Волновая оптика» (4 ч.).

Измерение скорости света. Дисперсия света. Принцип Гюйгенса. Интерференция волн. Интерференция света. Дифракция света. [Дифракционная решетка. Поляризация световых волн.]

Лабораторная работа № 4 «Исследование явлений интерференции и дифракции света»

Тема 9. «Элементы теории относительности» (2 ч.).

Законы электродинамики и принцип относительности. Опыт Майкельсона. Постулаты специальной теории относительности. Масса, импульс и энергия в специальной теории относительности.

Раздел 3. «Квантовая физика. Астрофизика» (18 ч.)

Тема 10. «Квантовая физика. Строение атома» (5 ч.)

Равновесное тепловое излучение. Гипотеза Планка. Законы фотоэффекта. Давление света. Корпускулярно-волновой дуализм. Гипотеза де Бройля. Планетарная модель атома. Опыты Резерфорда. Постулаты Бора. Модель атома водорода по Бору. [Лазеры.]

Тема 11. «Физика атомного ядра. Элементарные частицы» (9 ч.)

Методы регистрации заряженных частиц. Естественная радиоактивность. Альфа-, бета- и гамма-излучения. Радиоактивные превращения. Закон радиоактивного распада. Изотопы. Искусственное превращение атомных ядер. Протонно-нейтронная модель атомного ядра. Ядерные силы.

Энергия связи атомных ядер. Цепные ядерные реакции. Ядерный реактор. Биологическое действие радиоактивных излучений. Применение радиоактивных изотопов. Термоядерные реакции. [Термоядерный синтез.] Элементарные частицы. Фундаментальные взаимодействия.

Тема 12. «Элементы астрофизики» (4 ч.)

Солнечная система. Солнце. Звезды. Наша Галактика.

Тематическое планирование 10 класс (70 часов)

No	Наименование разделов/тем		Количество часов		
Π/Π		По программе	На проведение	На проведение	
			контрольных	лабораторных	
			работ	работ	
10 класс					
1	Введение	1			
Раздел 1. «Механика»		34			
2	Тема 1. «Кинематика»	12	1	2	
3	Тема 2. «Динамика»	12	1	3	
4	Тема 3. «Законы сохранения»	7	1		
5	Тема 4. «Статика. Законы гидро- и аэростатики»	4			
Раздел 2. «Молекулярная физика и термодинамика»		21			
6	Тема 5. «Основы молекулярно-кинетической теории»	11			
7	Тема 6. «Основы термодинамики»	6	1		
8	Тема 7. «Изменения агрегатных состояний вещества»	4		1	
Раздел 3. «Электродинамика»		10			
9	Тема 8. «Электростатика»	10	1		
10	Повторение	3			
Итого		70	5	6	

11 класс (68 часов)

No	Наименование разделов/тем	Количество часов		
Π/Π		По программе	На проведение	На проведение
			контрольных	лабораторных
			работ	работ
11 кл	11 класс			
Раздел 1. «Электродинамика» (продолжение)		24		
1	Тема 1. «Постоянный электрический ток»	9	1	1
2	Тема 2. «Электрический ток в средах»	5		
3	Тема 3. «Магнитное поле»	6		
4	Тема 4. «Электромагнитная индукция»	4	1	
Раздел 2. «Колебания и волны»		26		
5	Тема 5. «Механические колебания и волны»	7		2
6	Тема 6. «Электромагнитные колебания и волны»	8	1	
7	Тема 7. «Законы геометрической оптики»	5		
8	Тема 8. «Волновая оптика»	4	1	1
9	Тема 9. «Элементы теории относительности»	2		
Раздел 3. «Квантовая физика. Астрофизика»		18		
10	Тема 10. «Квантовая физика. Строение атома»	5		
11	Тема 11. «Физика атомного ядра. Элементарные частицы»	9	1	
12	Тема 12. «Элементы астрофизики»	4		
Итого		68	5	4